Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(7): e0274439, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428732

RESUMO

The relationship of food comminution and individual age in Tupaia belangeri is investigated. It is hypothesized that with increasing age the performance of the molar dentition decreases due to progressive tooth wear. While this relationship is well-documented for herbivores, age-related test series are largely lacking for insectivorous mammals. 15 individuals of Tupaia belangeri were fed exclusively with mealworms, and their faeces were analyzed for the number and size of chitin particles. The exoskeleton of a mealworm is resistant to digestive fluids in the gastrointestinal tract, and the size of individual chitin particles indicates the effectiveness of mechanical comminution that occurs in the oral cavity during mastication. It is hypothesized that a more precise occlusion of the dentition results in smaller particle size. Although individuals of all ages (juvenile, adult, and senile) were able to effectively process mealworms with their dentition prior to digestion, a larger area of very large chitin particles (98% quantile of all particles in senile animals as compared to in the same quantile in adults) in the feces of senile animals was detected. Even though the particle size of indigestible material is irrelevant for the digestive process, these findings either document somatic senescence in the functionality of the teeth, or alternatively a change in chewing behaviour with age.


Assuntos
Alimentos , Tupaia , Animais , Mastigação , Fezes , Fenômenos Fisiológicos do Sistema Digestório , Mamíferos , Tamanho da Partícula
2.
Struct Chem ; : 1-11, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36721714

RESUMO

Nanocarriers allow the connection between biomolecules and other structures to enhance the treatment efficacy, through the biomolecule's properties to an existing drug, or to allow a better and specific delivery. Apigenin and orientin are biomolecules with excellent therapeutic properties that are proposed in the fight against COVID-19. Besides that, graphene oxide is a nanomaterial that exhibits antiviral activity and is used as a nanocarrier of several drugs. We evaluated in this work, through molecular docking, the binding affinity between these structures to the receptor-binding domain of spike protein of two coronavirus variants, Delta and Omicron. The results indicate that all the structures exhibit affinity with the two protein targets, with binding affinity values of -11.88 to -6.65 kcal/mol for the Delta variant and values of -9.58 to -13.20 kcal/mol for the Omicron variant, which is a successful value as found in the literature as a potential inhibitor of SARS-CoV-2 infection. Also, through first-principles calculations based on Density Functional Theory, the interaction of graphene oxide with the biomolecules apigenin and orientin occurred. The results exhibit weak binding energy, which indicates that physical adsorption occurs, with better results when the biomolecule is set in parallel to the nanomaterial due to attractive π-π staking. These results are conducive to the development of a nanocarrier.

3.
Mycotoxin Res ; 38(3): 167-173, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35437629

RESUMO

A quick and selective analytical method was developed via LC-MS/MS for the simultaneous quantitation of alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TeA) which belong to the large group of secondary metabolites produced by fungi of the genus Alternaria. Cocoa is susceptible to a number of toxin-producing microorganisms, including Aspergillus and Penicillium species. The method relies on a single-step extraction, followed by an easy clean up, dilution of the raw extract and direct analysis. To assess whether cocoa and chocolate products can be a source of Alternaria toxins, a monitoring of cocoa and chocolate products (N = 99) as well as cocoa raw and semi-finished materials (cocoa shells, cocoa masses; N = 10) was performed. As the results, cocoa and products made from cocoa (without other ingredients) are no source of the Alternaria toxins considered here.


Assuntos
Chocolate , Micotoxinas , Alternaria/metabolismo , Chocolate/análise , Cromatografia Líquida , Contaminação de Alimentos/análise , Lactonas/análise , Micotoxinas/análise , Espectrometria de Massas em Tandem/métodos , Ácido Tenuazônico/análise
4.
J Vertebr Paleontol ; 42(2)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37564697

RESUMO

A new extinct sclerorhynchoid sawfish, Ptychotrygon ameghinorum sp. nov., is presented here based on abundant isolated teeth and some dermal denticles, which were recovered from the Mata Amarilla Formation, belonging to the lower Upper Cretaceous of the Santa Cruz Province in the Austral Basin of Patagonia, Argentina. This new species is the first Ptychotrygon occurrence in the southern hemisphere, which so far only has been reported from northern hemisphere deposits (Europe, North Africa, and North America). The presence of P. ameghinorum sp. nov. in these southern high-latitude deposits of Patagonia, Argentina, extends the geographic range of Ptychotrygon considerably southwards. This distribution pattern in the "middle" Cretaceous seems to correlate with the South Atlantic opening at the end of the Albian. The presence of lateral cephalic dermal denticles and the simultaneous absence of rostral denticles in the abundant fossil material support the view that Ptychotrygon did not develop such rostral structures. A reinvestigation of all known species assigned to Ptychotrygon reveals that P. ellae is a junior synonym of P. boothi, P. benningensis belongs to Texatrygon, P. rugosum belongs to Asflapristis, and P. clementsi represents an unidentifiable species (Ptychotrygon? sp.). The stratigraphic distribution demonstrates that Ptychotrygon might have originated in the Albian in south-western Europe and subsequently dispersed to obtain its widest distribution during the Cenomanian. In the Coniacian, a steep diversity decline is recognizable with a subsequent distribution shift from Europe to North America.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34883039

RESUMO

A quick and selective analytical method was developed employing LC-MS/MS for the quantitation of matrine. This is known to be a natural ingredient of Sophora ssp. and is suggested to be a potential contaminant, e.g. in herbal raw materials from liquorice or confectionery products based on liquorice. To prove that the finding of matrine in liquorice roots does not originate from an active use of pesticides, wild collection areas, as well as geographical, legal and economic aspects have been studied with the help of experienced traders and suppliers in cooperation with local liquorice producers. An LC-MS/MS method was successfully developed and applied for monitoring of raw material and semi-finished products (N = 104) and afterwards a model test was performed to show that findings of matrine in liquorice products originates from a co-harvesting of nearby growing Sophora roots during the manual collection of liquorice roots.


Assuntos
Alcaloides/análise , Glycyrrhiza/química , Praguicidas/análise , Quinolizinas/análise , Cromatografia Líquida , Raízes de Plantas/química , Espectrometria de Massas em Tandem , Matrinas
6.
Naturwissenschaften ; 108(3): 23, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993371

RESUMO

The Langenberg Quarry near Bad Harzburg has yielded the first Jurassic stem therian mammal of Germany, recovered from Kimmeridgian (Late Jurassic) near shore deposits of a palaeo-island within the Lower Saxony Basin of the European archipelago. The new stem therian is represented by one lower and three upper molars. Hercynodon germanicus gen. et sp. nov. is attributed to the Dryolestidae, a group of pretribosphenic crown mammals that was common in western Laurasia from the Middle Jurassic to the Early Cretaceous. The new taxon is characterised by small size, a reduced cusp pattern in the upper molars lacking a metacone, and enhancement of the shearing crests paracrista and metacrista. Phylogenetic analysis identified Hercynodon gen. nov. as sister taxon of Crusafontia from the Lower Cretaceous (Barremian) of Spain. Both taxa belong to an endemic European clade of dryolestids, including also Achyrodon and Phascolestes from the earliest Cretaceous (Berriasian) of England. Despite its greater geological age, Hercynodon gen. nov. is the most derived representative of that clade, indicated by the complete reduction of the metacone. The discrepancy between derived morphology and geological age may be explained by an increased rate of character evolution in insular isolation. Other insular phenomena have earlier been observed in vertebrates from the Langenberg Quarry, such as dwarfism in the small sauropod Europasaurus, and possible gigantism in the morganucodontan mammaliaform Storchodon and the pinheirodontid multituberculate mammal Teutonodon which grew unusually large.


Assuntos
Fósseis/anatomia & histologia , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Animais , Alemanha , Dente Molar/anatomia & histologia
7.
Cells ; 9(12)2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339143

RESUMO

Physical inactivity is considered as one of the main causes of obesity in modern civilizations, and it has been demonstrated that resistance training programs can be used to reduce fat mass. The effects of voluntary exercise on energy metabolism are less clear in adipose tissue. Therefore, the effects of three different voluntary exercise programs on the control of energy metabolism in subcutaneous fat were tested in two different mouse lines. In a cross-over study design, male mice were kept for three or six weeks in the presence or absence of running wheels. For the experiment, mice with increased running capacity (DUhTP) were used and compared to controls (DUC). Body and organ weight, feed intake, and voluntary running wheel activity were recorded. In subcutaneous fat, gene expression of browning markers and mitochondrial energy metabolism were analyzed. Exercise increased heart weight in control mice (p < 0.05) but significantly decreased subcutaneous, epididymal, perinephric, and brown fat mass in both genetic groups (p < 0.05). Gene expression analysis revealed higher expression of browning markers and individual complex subunits present in the electron transport chain in subcutaneous fat of DUhTP mice compared to controls (DUC; p < 0.01), independent of physical activity. While in control mice, voluntary exercise had no effect on markers of mitochondrial fission or fusion, in DUhTP mice, reduced mitochondrial DNA, transcription factor Nrf1, fission- (Dnm1), and fusion-relevant transcripts (Mfn1 and 2) were observed in response to voluntary physical activity (p < 0.05). Our findings indicate that the superior running abilities in DUhTP mice, on one hand, are connected to elevated expression of genetic markers for browning and oxidative phosphorylation in subcutaneous fat. In subcutaneous fat from DUhTP but not in unselected control mice, we further demonstrate reduced expression of genes for mitochondrial fission and fusion in response to voluntary physical activity.


Assuntos
Metabolismo Energético , Dinâmica Mitocondrial , Condicionamento Físico Animal , Gordura Subcutânea , Animais , Masculino , Camundongos , Tecido Adiposo Marrom/metabolismo , Biomarcadores/metabolismo , Peso Corporal , Metabolismo Energético/genética , Comportamento Alimentar , Regulação da Expressão Gênica , Genes Mitocondriais , Dinâmica Mitocondrial/genética , Tamanho do Órgão , Fosforilação Oxidativa , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Gordura Subcutânea/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/sangue
8.
Artigo em Inglês | MEDLINE | ID: mdl-32411091

RESUMO

Background: Mitochondrial dynamics are important for glucose-stimulated insulin secretion in pancreatic beta cells. The mitochondrial elongation factor MiD51 has been proposed to act as an anchor that recruits Drp1 from the cytosol to the outer mitochondrial membrane. Whether MiD51 promotes mitochondrial fusion by inactivation of Drp1 is a controversial issue. Since both the underlying mechanism and the effects on mitochondrial function remain unknown, this study was conducted to investigate the role of MiD51 in beta cells. Methods: Overexpression and downregulation of MiD51 in mouse insulinoma 6 (MIN6) and mouse islet cells was achieved using the pcDNA expression vector and specific siRNA, respectively. Expression of genes regulating mitochondrial dynamics and autophagy was analyzed by quantitative Real-Time PCR, glucose-stimulated insulin secretion by ELISA, and cellular oxygen consumption rate by optode sensor technology. Mitochondrial membrane potential and morphology were visualized after TMRE and MitoTracker Green staining, respectively. Immunofluorescence analyses were examined by confocal microscopy. Results: MiD51 is expressed in insulin-positive mouse and human pancreatic islet and MIN6 cells. Overexpression of MiD51 resulted in mitochondrial fragmentation and cluster formation in MIN6 cells. Mitochondrial membrane potential, glucose-induced oxygen consumption rate and glucose-stimulated insulin secretion were reduced in MIN6 cells with high MiD51 expression. LC3 expression remained unchanged. Downregulation of MiD51 resulted in inhomogeneity of the mitochondrial network in MIN6 cells with hyperelongated and fragmented mitochondria. Mitochondrial membrane potential, maximal and glucose-induced oxygen consumption rate and insulin secretion were diminished in MIN6 cells with low MiD51 expression. Furthermore, reduced Mfn2 and Parkin expression was observed. Based on MiD51 overexpression and downregulation, changes in the mitochondrial network structure similar to those in MIN6 cells were also observed in mouse islet cells. Conclusion: We have demonstrated that MiD51 plays a pivotal role in regulating mitochondrial function and hence insulin secretion in MIN6 cells. We propose that this anchor protein of Drp1 is important to maintain a homogeneous mitochondrial network and to avoid morphologies such as hyperelongation and clustering which are inaccessible for degradation by autophagy. Assuming that insulin granule degradation frequently suppresses autophagy in beta cells, MiD51 could be a key element maintaining mitochondrial health.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Insulinoma/patologia , Ilhotas Pancreáticas/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Neoplasias Pancreáticas/patologia , Fatores de Alongamento de Peptídeos/metabolismo , Adulto , Animais , Células Cultivadas , Proteínas de Ligação a DNA/genética , Glucose/metabolismo , Humanos , Insulina/metabolismo , Insulinoma/metabolismo , Ilhotas Pancreáticas/citologia , Camundongos , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Neoplasias Pancreáticas/metabolismo , Fatores de Alongamento de Peptídeos/genética
9.
Nature ; 581(7809): 421-427, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461642

RESUMO

The fossil record of mammaliaforms (mammals and their closest relatives) of the Mesozoic era from the southern supercontinent Gondwana is far less extensive than that from its northern counterpart, Laurasia1,2. Among Mesozoic mammaliaforms, Gondwanatheria is one of the most poorly known clades, previously represented by only a single cranium and isolated jaws and teeth1-5. As a result, the anatomy, palaeobiology and phylogenetic relationships of gondwanatherians remain unclear. Here we report the discovery of an articulated and very well-preserved skeleton of a gondwanatherian of the latest age (72.1-66 million years ago) of the Cretaceous period from Madagascar that we assign to a new genus and species, Adalatherium hui. To our knowledge, the specimen is the most complete skeleton of a Gondwanan Mesozoic mammaliaform that has been found, and includes the only postcranial material and ascending ramus of the dentary known for any gondwanatherian. A phylogenetic analysis including the new taxon recovers Gondwanatheria as the sister group to Multituberculata. The skeleton, which represents one of the largest of the Gondwanan Mesozoic mammaliaforms, is particularly notable for exhibiting many unique features in combination with features that are convergent on those of therian mammals. This uniqueness is consistent with a lineage history for A. hui of isolation on Madagascar for more than 20 million years.


Assuntos
Fósseis , Ilhas , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Esqueleto/anatomia & histologia , Animais , Dentição , Madagáscar , Crânio/anatomia & histologia
10.
PLoS One ; 15(2): e0228610, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32074114

RESUMO

Salamanders (Caudata) are one of the three modern groups of amphibians known from the Middle Jurassic. The early stages of evolution of these amphibians are still poorly known, especially for stem taxa of Jurassic age. A new small-sized stem salamander, Egoria malashichevi gen. et sp. nov., from the Middle Jurassic (Bathonian) Itat Formation of the Berezovsk Quarry locality in Western Siberia, Russia, is described on the basis of isolated vertebrae, including an atlas centrum and a fragmentary trunk vertebra centrum previously referred to an undescribed salamander taxon ("Berezovsk salamander A"). The new taxon is diagnosed by the following unique combination of vertebral characters: atlantal anterior cotyles with elliptical anterior outline, located at an angle of approximately 135-137 degrees to each other; wide posterior portion of the atlantal centrum; ossified portion of the intercotylar tubercle represented by dorsal and ventral lips; absence of a deep depression on the ventral surface of the atlantal centrum; absence of pronounced ventrolateral ridges on the atlas; absence of spinal nerve foramina; presence of a pitted texture on the ventral and lateral surfaces of the centra and lateral surfaces neural arch pedicels; presence of a short atlantal neural arch with its anterior border situated behind the level of the anterior cotyles; short trunk vertebrae; and upper transverse process (= diapophysis) larger than lower transverse process (= parapophysis) on the trunk vertebrae; notochordal canal opens in the upper half of the cotyle (= the lower portion of the centrum is more massive and less compact than the upper portion). The microanatomical organization of the atlas and trunk vertebrae is characterized by the presence of inner cancellous endochondral bone. The small body size (about 180-215 mm) of Egoria malashichevi gen. et sp. nov. indicates that that not all stem salamanders were large neotenic forms (up to 550-600 mm in Urupia and Marmorerpeton) and hints at a broader ecological role for stem salamanders.


Assuntos
Fósseis/anatomia & histologia , Urodelos/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Sibéria , Urodelos/classificação
11.
Science ; 367(6475): 244-246, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31949065
12.
PLoS One ; 14(7): e0220188, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31344085

RESUMO

Stereoscopic microwear and 3D surface texture analyses on the cheek teeth of ten Upper Triassic to Lower Cretaceous tritylodontid (Mammaliamorpha) taxa of small/medium to large body size suggest that all were generalist feeders and none was a dietary specialist adapted to herbivory. There was no correspondence between body size and food choice. Stereomicroscopic microwear analysis revealed predominantly fine wear features with numerous small pits and less abundant fine scratches as principal components. Almost all analyzed facets bear some coarser microwear features, such as coarse scratches, large pits, puncture pits and gouges pointing to episodic feeding on harder food items or exogenous effects (contamination of food with soil grit and/or dust), or both. 3D surface texture analysis indicates predominantly fine features with large void volume, low peak densities, and various stages of roundness of the peaks. We interpret these features to indicate consumption of food items with low to moderate intrinsic abrasiveness and can exclude regular rooting, digging or caching behavior. Possible food items include plant vegetative parts, plant reproductive structures (seeds and seed-bearing organs), and invertebrates (i.e., insects). Although the tritylodontid tooth morphology and auto-occlusion suggest plants as the primary food resource, our results imply a wider dietary range including animal matter.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Dieta , Fósseis , Mamíferos , Desgaste dos Dentes/patologia , Animais , Arqueologia/métodos , Tamanho Corporal , Preferências Alimentares/fisiologia , Fósseis/anatomia & histologia , Fósseis/patologia , Herbivoria/fisiologia , História Antiga , Mamíferos/classificação , Atrito Dentário/diagnóstico , Atrito Dentário/patologia , Atrito Dentário/veterinária , Desgaste dos Dentes/diagnóstico , Desgaste dos Dentes/veterinária
13.
J Morphol ; 280(8): 1098-1105, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30117612

RESUMO

The evolution of the various hearing adaptations is connected to major structural changes in nearly all groups of vertebrates. Besides hearing, the detection of acceleration and orientation in space are key functions of this mechanosensory system. The symposium "show me your ear - the inner and middle ear in vertebrates" held at the 11th International Congress of Vertebrate Morphology (ICVM) 2016 in Washington, DC (USA) intended to present current research addressing adaptation and evolution of the vertebrate otic region, auditory ossicles, vestibular system, and hearing physiology. The symposium aimed at an audience with interest in hearing research focusing on morphological, functional, and comparative studies. The presented talks and posters lead to the contributions of this virtual issue highlighting recent advances in the vertebrate balance and hearing system. This article serves as an introduction to the virtual issue contributions and intends to give a short overview of research papers focusing on vertebrate labyrinth and middle ear related structures in past and recent years.


Assuntos
Orelha Interna/anatomia & histologia , Orelha Média/anatomia & histologia , Vertebrados/anatomia & histologia , Animais , Audição/fisiologia
14.
Nature ; 562(7728): E27, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108361

RESUMO

The asterisked footnote to Extended Data Table 1 should state '*Including Thomasia and Haramiyavia'. This has been corrected online.

15.
Nature ; 558(7708): 108-112, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29795343

RESUMO

Haramiyida was a successful clade of mammaliaforms, spanning the Late Triassic period to at least the Late Jurassic period, but their fossils are scant outside Eurasia and Cretaceous records are controversial1-4. Here we report, to our knowledge, the first cranium of a large haramiyidan from the basal Cretaceous of North America. This cranium possesses an amalgam of stem mammaliaform plesiomorphies and crown mammalian apomorphies. Moreover, it shows dental traits that are diagnostic of isolated teeth of supposed multituberculate affinities from the Cretaceous of Morocco, which have been assigned to the enigmatic 'Hahnodontidae'. Exceptional preservation of this specimen also provides insights into the evolution of the ancestral mammalian brain. We demonstrate the haramiyidan affinities of Gondwanan hahnodontid teeth, removing them from multituberculates, and suggest that hahnodontid mammaliaforms had a much wider, possibly Pangaean distribution during the Jurassic-Cretaceous transition.


Assuntos
Fósseis , Mapeamento Geográfico , Mamíferos/anatomia & histologia , Mamíferos/classificação , Filogenia , Animais , Encéfalo/anatomia & histologia , Dentição , América do Norte , Crânio/anatomia & histologia
16.
Proc Biol Sci ; 285(1873)2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29467266

RESUMO

Middle ear ossicles (malleus, incus, stapes) are known for few multituberculate taxa, and three different stapedial morphotypes have been suggested: (i) slender, columelliform and microperforate, (ii) robust and rod-like, and (iii) bicrural. Reinvestigation of Upper Jurassic (Kimmeridgian) mammalian petrosals from the Guimarota coal mine in central Portugal (Western Europe) revealed an asymmetric bicrural stapes (ABS) in the paulchoffatiid Pseudobolodon oreas The middle ear ossicles displaced inside the osseous vestibule were detected by a µCT analysis. The Kimmeridgian age of the Guimarota stapes exceeds the stapes from the Early Cretaceous (Barremian) of Asia (about 122-124 Ma) by approximately 30 Myr, and is only slightly younger than the stapes of the recently described Oxfordian euharamiyidan Arboroharamiya allinhopsoni The Guimarota stapes indicates that the stapes of Lambdopsalis, described as columelliform and microperforate (small stapedial foramen), does not represent a general condition for multituberculates. The stapes of Pseudobolodon is bicrural, the anterior crus sits centrally on the oval footplate, and the stapedial head is simple and smaller than the footplate. We hypothesize that the ABS evolved from the symmetric bicrural stapes (SBS) of non-mammaliaform cynodonts. The ABS appears to be the ancestral morphotype of the mammalian SBS, and the mammalian columelliform imperforate stapes.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Mamíferos/anatomia & histologia , Estribo/anatomia & histologia , Animais , Portugal
17.
Anal Bioanal Chem ; 410(1): 189-200, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143879

RESUMO

Natural organic additives such as eggs, lard, resins, and oils have been added to mortars since ancient times, because the ancient builders knew of their positive effect on the mortar quality. The tradition of adding organic materials to mortars was commonly handed down only verbally for thousands years. However, this practice disappeared in the nineteenth century, when the usage of modern materials started. Today, one of the most recent topics in the industry of building materials is the reusing of natural organic materials and searching for the forgotten ancient recipes. The research of the old technological approaches involves currently the most advanced analytical techniques and methods. This paper is focussed on testing the possibility of identification of proteinaceous additives in historical mortars and model mortar samples containing blood, bone glue, curd, eggs and gelatine, by Fourier transform infrared (FTIR) and Raman spectroscopy, gas chromatography - mass spectrometry (GC-MS), matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS), liquid chromatography-electrospray ionisation-quadrupole-time of flight mass spectrometry (LC-ESI-Q-TOF MS) and enzyme-linked immunosorbent assay (ELISA). All these methods were applied to the mortar sample taken from the interior of the medieval (sixteenth century) castle in Namest nad Oslavou in the Czech Republic and their comparison contributed to the rough estimation of the protein additive content in the mortar. The obtained results demonstrate that only LC-ESI-Q-TOF MS, MALDI-TOF MS and ELISA have the sufficiently low detection limits that enable the reliable identification of collagens in historical mortars. Graphical abstract Proteomics analyses of historical mortars.


Assuntos
Materiais de Construção/análise , Materiais de Construção/história , Proteínas/análise , Animais , Proteínas Sanguíneas/análise , Colágeno/análise , República Tcheca , Ovos/análise , Ensaio de Imunoadsorção Enzimática/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Gelatina/análise , História do Século XVI , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Espectral Raman/métodos
18.
J Anat ; 231(6): 798-822, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28960296

RESUMO

The existing different modes of reproduction in monotremes, marsupials and placentals are the main source for our current understanding of the origin and evolution of the mammalian reproduction. The reproductive strategies and, in particular, the maturity states of the neonates differ remarkably between the three groups. Monotremes, for example, are the only extant mammals that lay eggs and incubate them for the last third of their embryonic development. In contrast, marsupials and placentals are viviparous and rely on intra-uterine development of the neonates via choriovitelline (mainly marsupials) and chorioallantoic (mainly placentals) placentae. The maturity of a newborn is closely linked to the parental care strategy once the neonate is born. The varying developmental degrees of neonates are the main focus of this study. Monotremes and marsupials produce highly altricial and nearly embryonic offspring. Placental mammals always give birth to more developed newborns with the widest range from altricial to precocial. The ability of a newborn to survive and grow in the environment it was born in depends highly on the degree of maturation of vital organs at the time of birth. Here, the anatomy of four neonates of the three major extant mammalian groups is compared. The basis for this study is histological and ultrastructural serial sections of a hatchling of Ornithorhynchus anatinus (Monotremata), and neonates of Monodelphis domestica (Marsupialia), Mesocricetus auratus (altricial Placentalia) and Macroscelides proboscideus (precocial Placentalia). Special attention was given to the developmental stages of the organs skin, lung, liver and kidney, which are considered crucial for the maintenance of vital functions. The state of the organs of newborn monotremes and marsupials are found to be able to support a minimum of vital functions outside the uterus. They are sufficient to survive, but without capacities for additional energetic challenges. The organs of the altricial placental neonate are further developed, able to support the maintenance of vital functions and short-term metabolic increase. The precocial placental newborn shows the most advanced state of organ development, to allow the maintenance of vital functions, stable thermoregulation and high energetic performance. The ancestral condition of a mammalian neonate is interpreted to be similar to the state of organ development found in the newborns of marsupials and monotremes. In comparison, the newborns of altricial and precocial placentals are derived from the ancestral state to a more mature developmental degree associated with advanced organ systems.


Assuntos
Eutérios/anatomia & histologia , Marsupiais/anatomia & histologia , Monotremados/anatomia & histologia , Anatomia Comparada , Animais , Animais Recém-Nascidos
19.
Free Radic Biol Med ; 102: 174-187, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890640

RESUMO

Mitochondrial dysfunction affects liver metabolism, but it remains unclear whether this interferes with normal liver aging. We investigated several mitochondrial pathways in hepatocytes and liver tissue from a conplastic mouse strain compared with the control C57BL/6NTac strain over 18 months of life. The C57BL/6NTac-mtNODLtJ mice differed from C57BL/6NTac mice by a point mutation in mitochondrial-encoded subunit 3 of cytochrome c oxidase. Young C57BL/6NTac-mtNODLtJ mice showed reduced mitochondrial metabolism but similar reactive oxygen species (ROS) production to C57BL/6NTac mice. Whereas ROS increased almost equally up to 9 months in both strains, different mitochondrial adaptation strategies resulted in decreasing ROS in advanced age in C57BL/6NTac mice, but persistent ROS production in C57BL/6NTac-mtNODLtJ mice. Only the conplastic strain developed elongated mitochondrial networks with artificial loop structures, depressed autophagy, high mitochondrial respiration and up-regulated antioxidative response. Our results indicate that mtDNA mutations accelerate liver ballooning degeneration and carry a serious risk of premature organ aging.


Assuntos
Envelhecimento/genética , DNA Mitocondrial/genética , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento/patologia , Animais , Autofagia/genética , Estágios do Ciclo de Vida/genética , Fígado/patologia , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação , Estresse Oxidativo/genética
20.
J Morphol ; 278(2): 236-263, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27889918

RESUMO

The monophyletic clade Monotremata branches early from the rest of the mammalian crown group in the Jurassic and members of this clade retain many ancestral mammalian traits. Thus, accurate and detailed anatomical descriptions of this group can offer unique insight into the early evolutionary history of Mammalia. In this study, we examine the inner ear anatomy of two extant monotremes, Ornithorhynchus anatinus and Tachyglossus aculeatus, with the primary goals of elucidating the ancestral mammalian ear morphology and resolving inconsistencies found within previous descriptive literature. We use histological serial sections and high-resolution microcomputed tomography (µCT) for correlating soft tissue features of the vestibule and cochlea to the osseous labyrinth endocast. We found that in both monotremes the scala tympani coils to a lesser degree than scala vestibuli and scala media, although all three scalae show an apical coil inside the osseous cochlear tube. The helicotrema (conduit between scala tympani and scala vestibuli) is in subapical position, and the cochlear and lagenar ganglia and their associated nerve fibers are not enclosed by bone. In comparison, in extant therian mammals (i.e., marsupials and placentals) the helicotrema is located at the apex of the osseous cochlear canal, the three scalae coil to the same degree and the cochlear ganglion is enclosed by the primary bony lamina. Whether the lagenar ganglion is lost in therian mammals or integrated into the cochlear ganglion is still debated. The presence of a sensory lagenar macula at the apex of the membranous cochlear duct, innervated by a separate lagenar nerve and ganglion is a plesiomorphic condition of amniotes that monotremes share. A separate osseous lagenar canaliculus for the lagenar nerve, and the coiling of the distended lagenar sac at the end of the cochlear duct are autapomorphies of monotremes. Based on our findings we hypothesize that the ancestral inner ear of stem mammaliaforms is characterized by a straight or slightly curved osseous cochlear canal, a lagenar macula, lagenar nerve fibers separated from a larger bundle of cochlear nerve fibers, the presence of an organ of Corti and an intra-otic cochlear ganglion suspended by membranous connective tissue. Among the major Mesozoic clades of crown mammals, cladotherians and gondwanatherians most likely acquired a fully functioning organ of Corti but lost the sensory lagenar macula, like extant therians. However, Mesozoic spalacotherioids, multituberculates and eutriconodonts likely retained the mammaliaform condition. J. Morphol. 278:236-263, 2017. © 2016 Wiley Periodicals,Inc.


Assuntos
Orelha Interna/anatomia & histologia , Monotremados/anatomia & histologia , Animais , Evolução Biológica , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...